This demo will use two custom datasets; df1 and df2:

data

df1 %>% 
  kable() %>% 
  kable_styling(full_width = F)
id a
1 name 1
2 name 2
3 name 3
4 name 4
5 name 5
6 name 6
7 name 7
8 name 8
df2 %>% 
  kable() %>% 
  kable_styling(full_width = F)
id a
1 cat
2 dog
3 piano
4 bear
5 yakult
6 air fryer

Unfortunately, not all joins are available when using sqldf, those which are will be shown here. The 4 main joins are:
1. INNER JOIN
2. OUTER JOIN
3. LEFT JOIN
4. RIGHT JOIN

LEFT JOIN

The left join takes all the data in the first (left) dataset and any matching values in the right (second) table

sqldf("
  SELECT df1.a, df2.a
  FROM df1
  LEFT JOIN df2 ON df1.id=df2.id;
")
##        a         a
## 1 name 1       cat
## 2 name 2       dog
## 3 name 3     piano
## 4 name 4      bear
## 5 name 5    yakult
## 6 name 6 air fryer
## 7 name 7      <NA>
## 8 name 8      <NA>

RIGHT JOIN

The RIGHT JOIN takes all the data from the second (right) dataset and any matching entries from the left (first). Not currently supported by sqldf.

sqldf("
  SELECT df1.name, df2.name 
  FROM df1
  RIGHT JOIN df2.id=df1.id
")

INNER JOIN

The INNER JOIN keeps any data which is in both tables.

sqldf("
  SELECT df1.a, df2.a
  FROM df1
  INNER JOIN df2 ON df1.id=df2.id
")
##        a         a
## 1 name 1       cat
## 2 name 2       dog
## 3 name 3     piano
## 4 name 4      bear
## 5 name 5    yakult
## 6 name 6 air fryer

FULL OUTER JOIN

FULL OUTER JOIN keeps all data, in both tables, whether they match or not. Not currently supported by sqldf.

sqldf("
  SELECT df1.name, df2.name 
  FROM df1
  OUTER JOIN df2.id=df1.id
")